

Enantiomeric haloruthenocenium salts: synthesis of the first representatives with the use of asymmetric reduction and asymmetric cyclopalladation

Irina A. Mamedyarova a,*, Marina N. Nefedova b, Viatcheslav I. Sokolov b

^a Department of Radiation Investigation, Azerbaijanian Academy of Science, Huscyn Djavid Ave. 31a, 370073 Baku, Azerbaijan b Institute of Organo-element Compounds, Russian Academy of Sciences, 28 Vavilov Street, 117813 Moscow, Russia

Received 10 March 1996

Abstract

Optically active substituted ruthenocenes, (+)-RcCH(OH)Ph (I), (-)-RcCH(Me)Ph (II) and (+)-1-hydroxymethyl-2-methylruthenocene (VIII) react with molecular iodine to yield the corresponding iodoruthenocenium salts Ia, IIa, VIIIa with 1_3^- anions. Reduction of these salts using, for example, NaBH₄ regenerates the optically active starting compounds. Ruthenocenes with electron-withdrawing substituents (COMe, COPh, COOMe) remain intact when treated with 1_2 , Fe(III), or Ce(IV). Asymmetric cyclopalladation of RcCH₂NMe₂ is described for the first time as the initial step of the reaction sequence leading to (+)-VIII.

Keywords: Ruthenocene; Asymmetric reduction; Asymmetric cyclopalladation; Haloruthenocenium salts

1. Introduction

The chemistries of ferrocene and ruthenocene are very similar, with one notable exception. They differ considerably in their behavior under oxidation conditions; known ferrocenes lose one electron to give the ferrocenium ion, whereas ruthenocenes provide two electrons but adding at the same time one positively charged halogen atom [1,2].

The transition from neutral metallocenes to metallocenium cations changes dramatically the electronic structure, as reflected in the properties of chromophors. In previous papers we have reported on the synthesis of enantiomeric ferrocenium salts with either central or planar chirality [3]. The circular dichroism spectrum had been observed for the first time for the optically active salt of 1-carbomethoxy-2-methyl ferrocenium ion [4]. In this work we describe the synthesis of enantiomeric salts of iodoruthenocenium cations with central and planar chirality. The optically active starting ruthenocenes were prepared by asymmetric reactions, either reduction or cyclopalladation. To prepare the

haloruthenocenium salts we used a mild oxidizing agent, molecular iodine [1].

2. Results and discussion

2.1. Ruthenocenes with a chiral center in the substituent via asymmetric reduction

A known strategy has been chosen for synthesis of these models, that is formation of chiral α -carbinol in the course of asymmetric reduction of phenylruthenocenyl ketones with the system lithium aluminum hydride-Chirald [5], as shown in Scheme 1. Carbinol I has been further converted into a "hydrocarbon" II when treated with AlCl₃ in ether and then with MeLi, similar to the reaction described for a ferrocene analogue [6].

2.2. Ruthenocenes with a chiral plane via asymmetric cyclopalladation

Optically active 1,2-disubstituted ruthenocenes have been prepared using the reaction shown in Scheme 2, which is an extension of our approach, elaborated in

^{*} Corresponding author.

COPh

Ru

CH(OH)Ph

Ru

CH(CH₃)Ph

Ru

CH(CH₃)Ph

Ru

$$|\alpha|_D$$
 +119

 $|\alpha|_D$ -3

 $|\alpha|_D$ -3

 $|\alpha|_D$ +84

 $|\alpha|_D$ +84

III

Scheme 1.

detail for the ferrocene series [7]. Now asymmetric cyclopalladation is shown to occur successfully with dimethylaminomethylruthenocene (IV). N-acetyl-L-leucine induces the preferential formation of the (+)- (R_p) -dimer V, $[\alpha]_p + 250$, in chemical yield 75%, whereas N-acetyl-D-leucine affords the (-)- (S_p) -enantiomer.

Carbonylation of (+)-V in methanol affords 1-carbomethoxy-2-dimethylaminomethylruthenocene,

(+)-VI, whose methoiodide is reduced with NaBH₃CN [8] to (+)-VII. Reduction of methoiodide with Na/Hg has been unsuccessful, giving a mixture of products. Subsequent reduction of VII with LiAlH₄ leads to (+)-carbinol VIII (Scheme 3). The (R_p)-configuration for (+)-VII and (+)-VIII had been assigned earlier by Hofer and Schlogl [9]; based on the values of $[\alpha]_p$ given in this report, the enantiomeric excess for (+)-VII and (+)-VIII may be determined as about 50%.

N-acetyl-1.-leucine

Na salt

N-acetyl-1.-leucine

Na salt

$$(+)$$
- (R_p) - V

N-acetyl-1.-leucine

Na salt

 $(-)$ - (S_p) - V

Scheme 2.

2.3. Iodoruthenocenium salts with substituents in a cyclopentadienyl ring

We have found that I, II, VIII and RcCH₂Ph (IX) react with molecular iodine to give the corresponding iodoruthenocenium salts Ia, IIa, VIIIa, IXa as triiodides.

On the contrary, the presence of electron-withdrawing substituents prevents the formation of these salts. Acetyl- and benzoylruthenocenes and 1-methoxy-carbonyl-2-methylruthenocene (VII) remain intact during the treatment with either iodine or $Ce(NH_3)_2(NO_3)_6$ as well as the system $FeCl_3 + HCl$. The potential for electrochemical oxidation is known [10] to increase by ca. 0.3 V owing to the introduction of CH_3CO or $COOCH_3$ substituents into the ruthenocene core. Interestingly, under oxidation of VII with $KlCl_4$ the methyl group was smoothly converted into a formyl group to give aldehyde X (Scheme 4).

The salts of iodoruthenoceniums Ia, IIa, VIIIa, IXa are red-brown crystalline compounds, stable in air, hardly soluble in non-polar solvents, but well soluble in

MeCN. In ¹H NMR spectra a characteristic deshielding is observed for Cp protons (ca. 1.5 ppm) compared with the neutral ruthenocenes (Table 1). The starting compounds can be obtained again when the salts are treated with reductive agents, NaBH₄ being the best.

Bis-carbinol **III**, which is a mixture of *meso*- and d,l-diastereomers, forms iodoruthenocenium salt in a similar way. The ¹H NMR spectrum of this salt exhibits multiplets of Cp protons in the region 6.0-6.3 ppm (8H), phenyl protons at 7.3-7.5 ppm (10H), and methine protons at 5.6-5.7 ppm (2H). However, the ratio

Table 1 ¹H NMR spectra of iodoruthenocenium salts and α -ruthenocenylcarbocations ^a, δ (ppm) ($J_{\rm HH}$)

Compound	No.	X	C ₅ H ₅	C ₅ H ₄				CH or CH ₂	CH ₃	ОН
<u></u>	la ^b	CH(OH)Ph	6.11s	6.18m	6.18m	5.94m	5.94m	5.63d (4.1)		4.37d (4.1)
; I-Ru+	IIa ^b	CHMePh	6.03s	6.40m	6.15m	5.99m	5.81m	4.08q (7.2)	1.46d (7.2)	
\bigcirc	IXa ^b	CH ₂ Ph	5.99s	6.15m	6.15m	5.91m	5.91m	3.89s		
I-Ru* Me	VIIIa ^b		6.01s	6.14m	6.09m	5.85		4.54, 4.37 (ABX system, ${}^{2}J = 14.9$, ${}^{3}J = 5.9$)	2.34 s	3.71t (5.9)
CH*PH	XI °		5.17s	6.24m	6.10m	5.88m	5.08m	7.26s		
CH; Ru Me	XII ¢		5.52s	6.17m	6.11m	5.51m		5.24, 5.06 (AB system, 1.1)	1.92s	

^a Multiplets of phenyl protons are observed in the expected region 7.0-7.4 ppm.

Ia, IIa, IXa, VIIIa in CD3CN. CXI, XII in CF3COOD.

of intensities of the latter do not correspond to the starting *meso/d*, ratio and, for some unknown reason, change gradually with time.

In the course of the present work we have observed that iodoruthenocenium salts are inclined to convert into the α -carbocationic salts easily identified by their ¹H NMR spectra. So Ia upon dissolving in CF₃COOH affords ReCH⁺Ph (XI). Formation of this carbocation accompanies the normal reaction of I with iodine. The major product is admixed with 10% of XI when unpurified iodine is used, but with only 2-3% XI if the iodine is previously sublimed and dried. Then the attempt to exchange I_3^+ for CF₃SO₃⁻ in VIIIa using silver triflate

Scheme 5.

leads to the formation of XI, identical to that obtained from VIII in CF₃COOH (Scheme 5). More unexpected was the formation of RCH⁺Ph PF₆⁻ as a sole product in an attempted preparation of chlororuthenocenium salt from benzylruthenocene, which yielded iodoruthenocenium salt in the normal way (Scheme 6).

The formation of α-carbocations from haloruthenocenium ions seems to be in accord with the recent work of Watanabe et al. [11] in which a similar conversion was observed for a bimetallocenyl system Fc-CH₂-Rc in the reaction with Cp₂RuCl⁺. The process might be either bimolecular or monomolecular. In the latter case it can be depicted formally through a quasi-five-membered transition state (Scheme 7).

2.4. Enantiomerically enriched iodoruthenocenium salts

These salts Ia, IIa and VIIIa have been obtained by oxidation of optically active I, II, VIII with iodine in CCl_4 . The deep color of these compounds (having I_3^- or $CF_3SO_3^-$ as counterions) does not allow their optical

rotations to be measured. However, reduction of IIa and VIIIa with NaBH₄ gives back the starting II and VIII with angles of rotation unchanged. In the case of I the optical rotation decreases from +87° to +40°, which may be explained by the formation of some achiral by-products (RcCH₂Ph for example).

3. Experimental details

¹H NMR spectra were obtained using a Brucker WP-200 SY spectrometer (200.13 MHz), chemical shifts δ are given in ppm from TMS and J values are given in Hz. Optical rotations were measured with a Vniiprod-mash polarimeter on the sodium D line. The mass spectra were recorded on a Kratos MS890 instrument, operating at 70 eV ionizing voltage. Dimethylaminomethylruthenocene (IV) was prepared by the method described by Hofer and Schlogl [12].

3.1. (+)-(R)-di-μ-chloro-bis[2-(dimethylaminomethyl)-ruthenocenyl]dipalladium(II) (V)

A solution of 0.28 g (1.74 mmol) of N-acetyl-Lleucine and 0.076 g of NaOH in 9 cm³ of water was added to a solution of 0.552 g (1.74 mmol) of Na₂PdCl₄ in 27 cm³ of MeOH. The solution was brought to slightly alkaline reaction using 50% aq. NaOH, and 0.5 g (1.74 mmol) of IV in 9 cm³ MeOH was added. The precipitate formed after 25-30 min. The reaction mixture was stirred for 4 h at room temperature, then evaporated in vacuo without heating. The dried precipitate was dissolved in benzene, filtered and evaporated to give 0.57 g (75%) of V, $[\alpha]_D^{20}$ +250 (c, 1.11; CH₂Cl₂). Fractional crystallization of V from a benzene-heptane mixture by gradual evaporation of solution gave a fraction of V with higher specific rotation $[\alpha]_{\rm p}^{20}$ +275 (c, 1.08; CH,Cl₂). ¹H NMR (C_6D_6) 4.70 (C_5H_5), 4.60– 4.50 (C_5H_3), 4.33 and 3.51 (parts of NCH₂ quadruplet), 3.03 and 2.90 (NMe₂).

3.2. (+)-Acetylacetonato[2-(dimethylaminomethyl)-ruthenocenyl[palladium(II)]

A solution of sample V, $[\alpha]_{\rm p}^{20}$ +250, in benzene and a double amount of Na(acac) in MeOH were stirred at room temperature, whereupon the color changed from

dark to light yellow. The solution was evaporated to dryness and the product extracted with pentane to give acetylacetonato [2-(dimethylaminomethyl)ruthenocenyl]palladium(II), $[\alpha]_D^{20} + 217$ (c, 1.5; CH_2Cl_2), m.p. 125°C. ¹H NMR (CD_2Cl_2) 5.18 (CH of acac group), 5.13dd, 4.57t and 4.49dd (C_5H_3), 4.49s (C_5H_5), 3.58 and 3.09 (AB system, J = 13 Hz, RcCH₂N), 2.79 and 2.41 (NMe₂), 1.84 and 1.79 (CH₃ of acac group). Mass-spectra M⁺ 495.

3.3. (+)-1-Methoxycarbonyl-2-dimethylaminomethyl-ruthenocene (VI)

A flow of CO was passed for 4 h through a solution of 0.6 g (1.4 mmol) of V, $[\alpha]_D^{20}$ +203, in MeOH; metallic palladium was removed and MeOH evaporated. The product was extracted with benzene-triethylamine (5:1) and treated with aq. NaHCO₃, washed with water, and dried over anhydrous K₂CO₃. Chromatography of benzene solution (SiO₂, eluent benzene-triethylamine 5:1) gave 0.33 g (70%) of VI, $[\alpha]_D^{20}$ +2.1 (c, 4; CH₂Cl₂). H NMR (C₆D₆) 5.22dd (3J = 2.4, 4J = 1.37 Hz), 4.75dd (3J = 2.4, 4J = 1.36 Hz) and 4.44t (3J = 2.4 Hz) (C₅H₃), 4.39s (C₅H₅), 4.20 and 3.23 (AB system, J = 13.3, -N-CH₂-), 3.46s (OMe), 2.28 (NMe₂).

3.4. (+)-1-Methoxycarbonyl-2-methylruthenocene (VII)

0.053 cm³ (0.86 mmol) of MeI was added to a solution of 0.3 g (0.86 mmol) of VI in acetone and stirred for 0.5 h. The solution was decanted and the quaternary salt dried. To a suspension of this salt in 6 cm³ of HMFTA under argon was added 0.105 g (1.72 mmol) of solid NaBH₃CN. This mixture was stirred for 0.5 h at 90°C, then for 0.5 h at room temperature, diluted with water and extracted with benzene. Chromatography of benzene solution (SiO₂, eluent benzene) gave 0.14 g (56%) of VII, $[\alpha]_0^{20}$ +13.8 (c, 4.3; CH₂Cl₂). H NMR (C₆D₀) 5.21dd (${}^3J = 2.4$, ${}^4J = 1.37$ Hz), 4.50dd (${}^3J = 2.31$, ${}^4J = 1.7$ Hz) and 4.35t (${}^3J = 2.37$) (C₅H₃), 4.37s (C₅H₅), 3.47s (OMe), 2.37s (Me).

3.5. (+)-(R)-I-hydroxymethyl-2-methylruthenocene (VIII)

To the filtered solution of 0.15 g of LiAlH₄ in 15 cm³ of abs. ether, 0.13 g (0.32 mmol) of (+)-VII in 15 cm³ of abs. ether was added dropwise. After 0.5 h stirring the mixture was quenched with 10% aq. NH₄Cl. Extraction with ether gave 0.11 g (95%) of VIII, $[\alpha]_D^{20}$ + 2.6 (c, 2.4; CH₂Cl₂). ¹H NMR (C₆D₆) 4.53m, 4.42m and 4.29m (C₅H₃), 4.35s (C₅H₅), 4.07m (CH₂), 1.89s (Me), 1.19br.s (OH).

3.6. (-)-(R)-(I-phenylethyl)ruthenocene (II)

 $0.35 \text{ g} (0.25 \text{ mmol}) \text{ of AlCl}_3 \text{ was added at } -60^{\circ}\text{C} \text{ to}$ a solution of 0.6 g (1.8 mmol) of (+)-phenyl-

ruthenocenylcarbinol (I) in abs. ether, then a stoichiometric amount of MeLi in hexane was added and the reaction mixture was stirred for 0.5 h at -40° C. This mixture was then quenched with aq. NH₄Cl, extracted with ether and chromatographed (SiO₂, eluent hexane), to yield 0.42 g of II (66%), $[\alpha]_{\rm D}^{20}$ -3 (c, 1.6; C₆H₆). Mass-spectra m/z 336 (M⁺), 321 (M⁺-Me), 259 (M⁺-Ph), 244 (M⁺-Me-Ph). ¹H NMR (C₆D₆) 7.0-7.2 m (Ph), 4.48m 4.41m 4.40m and 4.36m (C₅H₄), 4.45s (C₅H₅), 3.54q (³J = 7.17 Hz, CH), 1.38d (³J = 7.17 Hz, CH₃).

3.7. Preparation of iodoruthenocenium salts: a typical procedure

A solution or 0.28 g (1.1 mmol) of I_2 (purified by sublimation and dried over H_2SO_4) in 50 cm³ of CCl_4 was added dropwise to 0.10 g (0.34 mmol) of VIII, $[\alpha]_0^{20} + 3$, in 20 cm³ of CCl_4 under stirring. A dark precipitate formed slowly. The reaction mixture was stirred for 2 h, then the solution was decanted and the residual solid washed with CCl_4 to remove unreacted I_2 and dried under vacuo. The yield of VIIIa was quantative.

To a stirred solution of iodoruthenocenium salt was added NaBH₄ until the mixture was colorless. Then the mixture was filtered and MeCN removed in vacuo. The residue was dissolved in benzene, washed with water and dried over MgSO₄, benzene was evaporated to yield 0.04 g of VIII, $[\alpha]_{20}^{20} + 3$.

Indoruthenocenium salts were alternatively obtained by an exposition of the powdered substance with \mathbf{I}_2 vapor.

3.8. 1-Carbomethoxy-2-formylruthenocene (X)

0.12 g of KlCl₄ was dissolved in 10 cm³ of a mixture of MeCN and CCl₄ (9:1), added dropwise to a solution

of 0.04 g (0.01 mmol) of (+)-VII in MeCN and stirred at room temperature for 1 h. The solution was evaporated and the solid extracted with benzene. After chromatography on SiO_2 , 0.015 g (36%) of X, $[\alpha]_D^{20} - 220$, was obtained (c, 1; CH_2CI_2). Mass-spectra m/z 318 (M⁺). ¹H NMR (C_6D_6) 10.92s (CHO), 5.35dd ($^3J = 2.55$, $^4J = 1.49$ Hz), 5.18dd ($^3J = 2.58$, $^4J = 1.49$ Hz) and 4.37t ($^3J = 2.6$ Hz, C_5H_3), 4.24s (C_5H_5), 3.35s (CH_3).

Acknowledgements

The authors acknowledge financial support from the Russian Foundation for Fundamental Research (Grant 93-03-05827) and INTAS-94-1716.

References

- [1] J.S. Sohn, A.W. Schlueter, D.N. Hendrickson and H.B. Gray, *Inorg. Chem.*, 13 (1974) 301.
- [2] T.P. Smith, K.S. Kwan, H. Taube, A. Bino and S. Cohen, *Inorg. Chem.*, 23 (1974) 1943.
- [3] V.I. Sokolov, M.N. Nefedova and I.A. Mamedyarova, Metalloorg. Khim. (Russ.), 4 (1991) 191.
- [4] V.I. Sokolov, I.A. Mamedyarova, M.N. Nefedova and G. Snatzke, J. Organomet. Chem., 438 (1992) C26.
- [5] M.N. Nefedova, I.A. Mamedyarova, P.V. Petrovsky and V.I. Sokolov, J. Organomet. Chem., 425 (1992) 125.
- [6] J.C. Leblanc and C. Moise, J. Organomet. Chem., 120 (1976) 65.
- [7] V.I. Sokolov, L.L. Troitskaya and O.A. Reutov, J. Organomet. Chem., 182 (1979) 537.
- [8] K. Yamada, N. Ito and T. Ival-tuma, Chem. Commun., (1978)
- [9] O. Hofer and K. Schlogl, J. Organomet, Chem., 13 (1968) 457.
- [10] S.P. Gubin, S.A. Smirnova, L.I. Denisovich and A.A. Lubovich. J. Organomet. Chem., 30 (1971) 243.
- [11] M. Watanabe, T. Imamoto and H. Sano, J. Organomet. Chem., 438 (1993) 167.
- [12] O. Hofer and K. Schlogl, J. Organomet. Chem., 13 (1968) 443.